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A BAYESIAN INTERPRETATION OF
DATA TRIMMING TO REMOVE EXCESS CLAIMS

William S, Jewell

University of California, Berkeley
& ETH-ZUrich

Abstract

The effect of excess or catastrophic claims
is well recognized in insurance, For example,
in experience rating it is customary to truncate
the data to minimize the effect of such outliers;
Gisler has recsntly proposed a credibility formula
using such data trimming, This paper develops a
model of the excess claims process and finds the
exact Bayesian forecast, The resulting forecast
form is approximately a data trim, thus justifying
the simpler, heuristic approach,

Zurich, March, 1981




. 1, Introduction
The effect of excess or catastrophic claims is well
recognized in insurance, Typically, one wishes not only to
analyze them in detail to determine and, if possible,
correct their causes, but also to modify the data so as to
minimize their effect upon normal operating procedures of
the firm,
For example, in experience rating, data x = (xl,xz,...xn)
collected from a policyholder's experience in years 1,2,...n
is used to modify his premium for year n+l, If ; = ;n+1
is the random variable denoting next year's total paid
claims, the fair premium will be just the regression of ?
on the data X, or €£(7)z). In credibility theory, it is
assumed that this forecast is linear in the data, giving

. the well-known formula:
. n
(1.1) £GFID) = £(x) = (1-z_)n + Zn(i';lxt) .

Here m is the "manual" (fair, no-data) premium, and

Zn = n/(n+N¥) is the credibility factor with time constant
N determined empirically or from a Bayesian model (see,
e.g., Norberg(1979) for further details),

The effect of an excess claim upon experience rating
is obvious from (1.1). What one would like to do is to
detect and remove this claim from the data, and spread
all or a portion of the excess amount over all the policy-
holders, perhaps by charging it against a special reserve,
However, in many situations it is not possible or economical
to use qualitative information about the claim to decide
12 it is of ordinary or excesa type, and one must use a

' nunerical procedure to "cleanse" the data before using (1.l).
Based upon heuristic methods used in industry, A. Gisler
(1980) proposed to replace (1.1l) by:




a
(1.2) 2(g) = a + B2 min(x, M)
- )
tal
where the parameters (a,b,M) are adjusted so as to
minimize the mean-squared error in the forecast; the
result could be called a data-trimmed credibility formula,

2, A esian Model for Cutliers

We now develop a model which describes how excess
claims arise, and then find the sxact Bayesian prediction
formula, By comparing this with Gisler's form (1.2), we
will be able to provide additional motivation for the
trimming procedure,

First of all, we assume that an grdinary claim
random variable, ;o' has a lnown density, p (z,e),
depending upon an unknown parameter e which characterizes
the different poliecyholders and their exposure characteristies,
The first two moments of this random variable are:

(2.1) my(e) = E(X, ) e) i vg(e) = V(E je)

In the usual experience rating model, we are given several
independent observations of the ;; type from a policy
with fixed, but unknown, ¢, and we wish to estimate the
mean of the next observation from the same policy. This
is equivalent to estimating mo(o). given a prior density
on o, and the data x . If it is known that all data is
of ordinary type, then in many cases the credibility forecast
(1.1) is exact, or a good approximation,

Now, however, suppose that it is occasionally possible
that we observe instead an excess claim random variable,

%, with density p.(x.) not depending upon e (although

this can be easily generalized, if desired). This excess
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claim is considered to be the result of some extraordinary
cause, 8o that the density Pe will have large mean and
variance compared with every density Poe We also assume
that there is no qualitative way in which one can identify
an excess claim as such; thus, the densities should have
overlapping ranges, otherwise, there would be no difficulty
in separating excess claims based upon their magnitude,

We continue to let x = (xl,xz,...xn) represent the
observational data, assumed independent, given e. But
the gbservation random variable, ;t' (t=1,2,...n), is
now sometimes an ordinary, sometimes an excess random
variable, and we assume that there is a known gontamination
probability, T, that independently selects if an ordinary
claim is replaced by an excess claim, In other words, we
assume that the individual observations follow the mixed
density:

(2.2) p(x, °) = (l-ﬂ)po(xtlo) +1Tpe(xt) ’

e

so that the likelihood of x, *

n
(2.3) p(zle) = J[p(z.le) ,
t=1

consists of 2" terms. Since Tl is small, however, only the
first few terms will generally be significant (e.g., there
i are usually only no, one, or a few excess claims in any

1 small sample). _
4 As in other experience rating models, we assume that

} we are given a prior density, p(e), on the unknown parameter,
: 80 that Bayes' law then gives a posterior-to-data density
;1 for the unknown parameter of:
|

(z10) p(e)
(2.4) pleix) = %;?-.— ’

*From this point on, we are using the usual Bayesian
trick of using p(.) for several different densities, and
letting the variables "speak for themselves", |
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where p(x) is the integral of the numerator over e. Now,
however, we must remember that we are not interested in
predicting just the next observation, but rather in
predicting the next observation, given that it is of ordinary
4ype; this random variable, call it ;o' has a density po(y°|o)
if ¢ were known. It follows then that, given the data X,

we can form the Bayesian predictive density of ?; from (2.4)
as follows:

(2.5) PTIE) = [r,(3,10) Blolm) a0 .

The exact Bayesian mean predictor of Yo is then just the
first moment:

(2.6) EGo1n) = @ = [a,(0) plorx) 20 .

To better undertand how this formula depends upon the data,
we need to develop further the likelihood (2.3).

3, Single Observation Case

Pirst, suppose that only n=l observation has been
made. Then (2.3) has only two terms, and the exact forecast

is:
(3.1) f£(x,) = 1 Fl—ﬂ) m_(e) p.(x,]0) ple) de
1 p(x; 0 o'l
| +11p, (x,) mo(o) p(e) do] ,
where
(3.2) p(x;) = (1-mp,(xy) +Mp,(x,) 3 Polx,) = fpo(x1| o)p(e)de . )

The second integral in (3.1) is just the a priori expected




value of ?; (the manual premium):

~

(3.3) m, =£n () = €5, ,

which would be the "forecast" if no data were available.
The first integral in (3.1) is more interesting, as
it is related to the Bayesian prediction in which it _jis known

that the observation is of ordinary type. In contrast to
: t(xl), which is the prediction from an arbitrary observation

following (2,2), we can define fo(xl) as the ordinary
gbservation prediction, gotten from (2.6) by setting fr=0:

w p,(xy10) ple)
| (3.4 EG 1 omtnamy) = £,(x)) = [ (92 rey—as .
] ‘

This could, of course, follow the linear credibility law (1.1).
Finally, we rewrite the exact forecast as:

(3.5) 2(x,) = ;%;;T-El'“)po(xl)fo(xl) +'ﬁpe(xl)mo] ’

which can be rewritten in two revealing forma: the first,

(3.6) £(x,) = M ’
1+ d(xl)

with

(3.7) dap) = () Pemas a
“Pei%y !

as an "odds-likelihood-ratio"; the second in a credibility
format:

(3.8) £(x)) = [1-2(x))]m) + 2(x))2 (%)) ,

TR et ot e S T
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with a new data-dependent credibility factor:

(1"'")P°(11)
(1-Mp, (xq ) Hp, (x;)
Z(‘l) is essentially the a posteriori probability that the
observation xq is ordinary,

In the usual situation, the averaged ordinary density
p,(x;) and the excess density p,(x,) might appear as in
Pigure 1, giving then the weighting functions d(xl) or
Z(xl) shown in Figure 2,

-1
(3.9) 2(xy) = [1+8(x))] =

4, Comparison with Trimming in the Credibility Case
As discussed in the first Section, it is often the

case that fo(;) is linear in the data x, i.e. it follows
(1.1), with m replaced by m,, and the ordinary (non-data-
dependent) credibility factors Z, replaced by:

gv_(9)
(4.1) Z2op = ’:No ; N, 3‘1’7‘:7?7 .

Thus, in the one-dimensional case, fo(xl) in (3.8) would
be replaced by:

(4.2) £,(x)) = o, + Zol(xl-mo) .

This means that the exact Bayesian forecast would have
the interesting shape shown in Figure 3,

This shape shows us that, if X, is small, we believe
it is of ordinary type, and we should experience rate
according to the linear law (4,2)., But as X, increases
beyond m, into the region where the odds-likelihood-ratio
becomes significant, we begin to hedge our bets on the
fact that we have an ordinary observation, and to reduce
the dependence of the forescast on Xy Finally, for Xy
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& very large, an excess observation is highly credible, and
' we settle for the "no-information" manual rating, o
We see that the resulting forecast is quite similar
to that obtained by ordinary credibility theory, but
trimming the data and replacing x, by min(x,,M) as in (1.2).
Although sharp trimming will not have the "bump" shown in
Figure 3, the effect will be small because the three
parameters (a,b,M) in (1.2) can be adjusted to minimize
the mean-aquared error, thus giving a straight-line portion
to the forecast which is slightly different than (4.2).
Another point in favor of the trimming is that it
might be difficult to implement the exact predictive form
in Figure 3 in a real experience-rating scheme; it would
be difficult to explain a plan in which a policy with a
larger claim might have a smaller next year's premium !

S5+ A Numerical Example
Figure 4 shows a numerical example in which normal

densities were chosen for the average ordinary and excess
densities; the means and standard deviations were:

By =My =105 05 =5 Mo =50 3 74 =20,
% A contamination probability M = 0,1 and a credibility

factor zol = 0,5 were used, so
£,(xy) = 10 + 0.5(x,-10) .

The resulting exact forecast f(xl) is plotted in Figure
4, together with the optimal trimmed forecast,which is

approximately
2(x)) = 10 + 0.441[min(x,14.7) - 10] .

Note that in the use of Gisler's results, one must

subtractdnu’ from his forecast, as he does not have an
explicit model for the generation of excess claims, and
is predicting a future observation of either type,

SN SRON VS T Ve .
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Figure 4, Exact Bayesian and Trimmed Data Forecasts for Example,

6, General Case
From the preceeding, it should be clear that the

optimal predictor for an arbitrary number of observations n
consists of 22 terms from (2.2)(2.3), corresponding to all
the different ways in which the data ;s(xl,xz....xn) can be H
partitioned into ordinary or excess categories, The formulae
are greatly simplified in the general case if we use set-
theoretic notation. 1

Let M= {1,2,...n}, § be any subset of N (including N
and the empty set @), §= n -8’, and J = (}ll . Use also §
as a subscript to denote an arbitrary subset of observables,
so that, for example, Xy = {lejiﬁ}. Then the probability
that this subset is all ordinary is:

(6.1) 2o(xg) = [TL 2o(xjle) p(o) ao
e}

P s
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whereas the probability that it is all excess is:

(6.2) p.(xa) = IT p (x,) .
e' "} 1 e'"y
For consistency in the following equations, set po(x¢) =

Next, we define fo(x,) to Be the Bayesian forecast
of an ordinary random variable, Iqor using only the data xg ’
assumed to be all of ordinary type. This might be the
J-term generalization of (4.2), e.g., (2,1) with m replaced
by m,, Zn replaced by ZoJ' and of course using only the
data x4 . For consistency, the no-data forecast is
f0(3¢) = moo

Then, examination of the expansion of (2,3) shows
that the forecast consists of the weighted sum of 2
forecasts:

(6.3) 1@ = 3250 2,(5)
g

where the data-dependent credibility factors are:

(6.4) 2, (x) = K =M1 p,(xg) By (xp)
and K is adjusted so that the factors sum to unity,

The sum in (6.3) is over all 2" subsets of ! ,although,
as previously stated, it is unlikely that more than a few
excess claims would be present with M small, This suggests
the following computational strategy: arrange the data
in decreasing magnitude, X13XadeeePXpy take §isuccessivaly
to ve ¢, {1}, {1,2}, ...etc.,and compute the corresponding
credibility factors Z’ o At some point these factors will
become quite small, and the remaining terms in (6.3) can be

neglected, One can, if desired, bound the neglected terms,

4 o et O’"“”""‘, edoneT
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{ L L._Continuing Research

E i The results presented here are part of a continuing
%

[

research effort, joint with H, Buhlmann and A. Gisler,
Current effort is devoted to multi-dimensional computations,
‘ and comparison of trimmed-data forecasts with the exact
| Bayesian prediction, Preliminary results indicate that
: : the Gisler approximation continues to be quite good in the
- multi-dimensional case, These and other results will be
} ' be presented in an expanded version of this paper later
‘ this year,
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Excess Claims and Data Trimming in the Contsxt of Credibility
Rating Procedures

by Hans Bthlmann, Alois Gisler, William S. Jewell*

1. Motivation

In Ratemaking and in Experience Rating one is often confronted
with the dilemma of whether or not to fully charge very larzge
claimg to the claims load of small risk groups or of individual
risks. Practitioners typically use an a posteriori argument in
this situation: "If such large claims should be fully charged
then the ratss obtained would become ‘'ridiculous', hence it
should not be done.” The present paper aims at explaining this
practical attitude from first principles.

: Credibility Theory in its standard form makes the first step in
ng the good direction. It explains to us that all claims should not
be fully charged (but only with the constant fraction of the cre-
dibility weight). In many applications, however, it is still felt
‘ that the fraction of this charge shculd depend on the size of a
. claim. This leads very naturally to the idea of combining credi-
1 bility procedures and data trimming.

Of course, such an idea needs to be tested. The first argument

in favour of it was given by Gisler (1] who showed that in many
cases the mean gquadratic loss of the credibility estimator is
substantially reduced if cone introduces trimming of claims data.
This paper goes even further. It formalizes the standard way of
thinking about large claims and then shows that "optimal forecas-
ting" of rates (using Bayes estimation techniques) and forecas-
ting by “credibility techniques combined with data trimming” lead
to almost identical results.
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! * The authors are greatly indebted to R. Schnieper who did all
the numerical work on the ETH computer.
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2. The Basic Model

Throughout the paper we work with the most simple model in the
credibility context

‘ X = (X3, X3500.4 Xp) is the random vector representing the
[ experience of a given risk in the years
l' 2’.-., n

B sty o i

. - The quality of the risk is characterized by an unknown parame-
: ter value 9, which we consider as a realisation of a random
variable € with distribution function U (8)

Given the parameter value ¢ , {X;, xz,...,xn} are i.1.d4. with
1 density function f,(x) [mean u(8), variance g®(8)]

To these standard assumption in credibility theory we add now
some more structure regarding the distribution of the size of a
claim. The main idea is introduced by the assumption that the
Cclaims sizes are drawn from two different urns (distributions).

Mostly, i.e. with probability 1l-v, we observe an grdinary claim

with density p,(x/5) (mean u,(8), variance o3(6)] and occasio- .
nally, i.e. with probability m, we observe an excess claim (catas-

trophic claim) with density pe(x,,) (mean u_(8), variance a:(e)] .

Py (%) Pg(X/q)
f‘ ordinary excess
- claim amounts claim amounts
s <
‘ occurrence l-w "

We have assumed that the mixing probabilities are independent of

0 and from now on we shall also suppose that the density of the
excess claims is independent of the risk parameter, hence formali-
zing the idea that large catastrophic claims have no bearing on
the quality of the risk.

o e e W e
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In mathematical shorthand all the considerations just made regar- )
ding additional stiucture are summed up by stating that the density




4 fo(x) has the following form 4

,‘j (] 1) fo(x) = (l-w)po (x/s) + Tpg (x)

3. The Basic Problem

jf As always in the credibility context our aim is to estimate

u(8) based on the observations of X = (X)) Xg9p000sXp)
pure premium for experience of the
the given risk given risk in the

years l_,2,...,n
One knows that the best estimator for this problem is
P(X] = E[u(e)/E ]
Using the special structure of formula 1) we obtain

2) PIX] = mug + (1-m) Eug(9) y ]

g(Xx)
If we use standard credibility techniques we estimate by

n
3) £[(X] = a+b] X,  with optimal choice of a,b
i=l

PSP iy A:.V.___

And if in addition we introduce trimming of the data we estimate by

n
4) £(X] = a+b Zl(xiAM) with optimal choice of a,b,M
i=

i W e L L

, Using 4) we are committing the following error against optimal
P estimation
E !
i
s f;
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3 n
6) 4inf E {;[ﬁl- £[§1} = {inf E {nu. +(l-m)g(X) - a=-Db } (xiAM)}
a,b,M a,b,M is=}

- n 2
= (1-m)? inf E |8~ 4g(x)- —= I (XaM)
a,b,M l-v l-x i=l

n 2
= (1-m)? inf E (g(X) - a'- b’ ] (X, AM)
dlb'vu i=}]

The following two problems are therefore equivalent
n

A) Estimate P(X] (tetal premim) by a +b ] (X, AM) with optizal a,b,M
i=]
n

B) Estimate g(X) (ordinary prezium) by a'+ b'] (X,AM) vith optimal a',b',M

i=1

For the optimal choises o i parameters (denoted by ~) we have

~
-
[
[ ]
-
H
1
B
St
[ 2}

' ¢ ww&

S o= (l-m) B

n

In the following we want to illustrate that &'+ b' ] (xiaﬁ) is a
i=]l

good approximation of g(X) = E [uo(e)/x] (Problem B) above)

We actually shall compare

@'+ B' ]| (x,AM) with g(x) for any observation x of X

4. The Exact Form of g(x)

-x1 we obtain
=l

Writing out the conditional expectation E [uo(a)/x
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n
fu (8) i'l{(l-“)po(xi/e) + "Pe(xi)} du(s)

l'l
(1-T)p_(x4,.) + 7P, (x )} au(e)
1_1 { 0'‘*i/9 e'"1

8) gi(x) =

Putting I = {1,2,...n} and Sel we rewrite

n
9) ¥ {(l=mp (x4 ,q)+7D, (X )} « § (1-m® ™% 1 p_(x,,) "_p,(x,)
1-1{ oi/eT T T gar 1es © /8'iez et

where the sum on the right side must he taken over all subsets

SeI (including @ and I) with s = |S]
and n = |I]

We also use the abbreviations
Po (x%¢) -fvr Po(xy ,¢) dU(8)
S tes /8

Pe (Xg) -j T pglx;) dU(8) = 7 p,(x,)

ies ies
x \R"S P, "‘s’Pe("é"
L (xg) = G.-_w) T B, %) [P %) = 1]

E {u_(8) =
o o /xs (x )
o S

Then introducing 9) into 8) and carrying out the integration
we find for the numerator of g(x)

s _n-s
SZ.I(I m° o 12§ p.(xi)fuo (e)i;s. P, (x1,,) dU(8)
or
I a-m® v™® o (xg)p, (xg) E, [“o"”/x ]
Sel S
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and for the denominator of g(x)

I a-m3 7

p.(x.)p_(x3)
Sel 0 "S§S' e’ S

Dividing both numerator and denominator by (l-ﬂ')n po(xI) we final-
ly arrive at

Ug (8)
E, [uo(e)/§]+ I L (xs)so[ ° /xs]

ScI
ST
10) g(x) =
1+ L (x)
; Sel S
S¥I
.
; Remarks:
1) Observe that g(x) is a weighted average of forecasts based

on all subsamples Xg of the total sample Xq v the fore-
casts being calculated under the assumption that the cubsample
contains only claims of the ordinary type.

i1) As i%; is usually rather small the weight of L(xs) is ra-
ther quick decreasing with decreasing number of observations

e in x3 for a fixed number of observations the weight L(xs)

is rather big if both po(xs) and p.(xg) are big i.e, if

Xg and xg are very likely to come from the ordinary and

the excess urn respectively.

A! 114) Dividing by gotxz) is obviously only allowed if all the ob-

fﬁ served claims are possibly of ordinary type. The weight func-

‘ tion L(xs) is then only positive if p.(xg) is positive
i.e. if the subset x3 is possibly of excess type. Thus the
formula does what we would have done by intuition as well, it
excludes predictions based on claims which can be surely re-

cognized as excess claims.




-t

LB

PSR DAL i S SN

-

S. More insight from the single observation case

At this point it is worthwhile to consider the special case where
the whole sample of observations contains only one observation,
i.e.

x = (x)

PFor simplicity we omit the index 1 and write x for the single ob-
servation. We have then

E, ["o“”/x] + :'[f.”l .L{Lo(e)]

11) (x) =
I 1 + L[;wl
] p‘(x)
with r..[xﬁ] - 1= _po(x)

The right hand side is a multiple of the likelihood ratio. If the
latter is monotonically increasing (which is typically the case
in applications) 30 is also the weight given to the constant es-
timator E [uo(e)]- m, . Assume in addition that E, “o"’/x]
is of linear form; then our estimator g(x) is a mixture of the
two cCases (corresponding to the two pictures)

q g

4 $

E, [v° (9)/x] = ax+b

i

v a — X = X

the weight being shifted from the estimator on the left to the
estimator on the right as x increases. The resulting estimator
is almost of the form a+b ain(x,M) . Hence credibility with trim-
ming is almost exact! This fact will be illustrated by a numerical
example in section 6. In fact our numerical example will show that
this fact also carries over to higher dimensions.




6. A Numerical Example

6.1) For explicit calculations we are aisuming that for ordinary

¢laims
po(x/e)

8

is a normal density with mean 9
variance v

is normally distributed with mean m,

variance w

We then have

po(xs) --/PW po(xi/e)dn(e) which turns out to be a multi-

1es dimensional normal density with

mean vector

and covariance matrix
W+ W...W

W WV...

.
.
.

w e WEY

Proof that polﬁs) has density 12:

a) Given 9 any linear combination § c;x, 1is normal with mean

¢,8 and variance ¢
i

2, . ies

1 Integrated cut with

%gipect to the normaiesstructure function of 6 we obtain

a normal distribution with mean | ¢
e v+ § c:v . But a sampld®S x

and variance
whose linear combi-

1%
s

n gions are 371 normally distributed is multidimensional
normal.

SR B W T PO
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b)

-0m
e L - (alj)ies
jes
qij = Cov(xi,xj) = E[Cov(xi.xj)/e] + v;r[s[xi/e] . e[xj :1]
= 61j v + w

q.e.d.

It should be noted that

13) det J = v" + av®lw  (subtract first row from all
other rows and then develop
along the first column)

Also observe the explicit form of

-1
] “=aAs= (aij)ies , hamely

jes N alg
1 w use (I+afB) "= I -
M4) agy =518y - m) 1+a8|

From elementary calculations in credibility theory we
finally also know that

- sw v
15) Eo[ 4 xs] = "s v+sSw + lllc, visw

6.2) For the excess claims the probability law is specified by

assuming that

pe(x) is a normal density with mean e

2

variance °e

o Vi bl e S RSN

PGP TP e s
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7. Numerical Calculations of g(x)

For our calculations we have chosen

m =
0

v -

v -

l=t =

10
12.5 } 0 =5
12.5

0.9

and we cbtain

a) for n=}

(single observation case)

BEES58vvman
2585888 =
ss=a§=3§§§ L

FEFLEEI
335888

KEFEEES
3 £

e
g

.

10.8269
10.61%3
10.19%2

10.0370
10.0150
10.0039
10.0022
10.0008
10.0003
10.0001
10.0000
10.0000
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g(xy,x,5)

(two observations)

b) for n=2
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(five observations)

¢) for n=5

note: c3,c4,c5 are chosen as "parameters”

g(xl,xz, C3pC4pC5)

for the following tables

i) (C3lC4rCS) = (10,10,10)
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(c30c41cS) = (10,10,25)
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8. Optimal Trimming

Gisler has shown [1] that for given M the optimal choice ot

the approximation

]

nd hence to P(x]

u(e) [a

n

e

u@) ma+b § (x

to

rum

i=]

can be calculated as follows

by = Cov {x;aM, X531

where

)

16)

by = Cov [X AM, X;~M]

b3 = Var [XyAM]

PR

ry
®
2 «a
m '
=
< s ]
- ]
W J e
(] hOu\“l/
- v =
E o~ 2
201
w L=
[+
e T8
+ u | Mt}
o B
~ 3 4
™~ -l (-}
-4 = -

b-bl is maximum.

Hence the trimming point M is optimal if

P e e m—
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In our basic model (cf. section 2) we find
2 M
19) bl s (l=%)" Cov [uo(e), uo(e)] where
M
"o(e) = E[x'\M/G,x o:dinary]
u () = E[x/s,x ordinary ]
b, = (1-7)* var [u:(a)]
by = (1-u)z[a;"(e)] + maie (1-m2 Vaz[u’:(e)] +
2
wrtem 2|l @) - W
L\ ) [ ]
2M
with 9 (8) = Vu:[xau/e'x ordinary]
2M -
% var[x"M/x excess]
uMt = E |xM
e /X excess
Using explicitely the normal distribution as assumed both for or-
dinary and excess claims in section 6 we obtain from some rather
tedious integrations:
Let ¢(.) denote the standardized normal distribution function
_ and o¢(.) the standardized normal density function, then
N M-mo
i 20) bl = (l=7) wé o= /v + W
% o

b, = (1-m) *cov [Ur\M ’ Uz/\M]
where the covariance i1s obtained by numerical integration.

- Bl
by =A-B

Eoh i e IR TN,
N > ettt N, | tm e - lm .t

T

PO IS gt Lrafle e &




... .. 1
=lbf=
2,2 u- /M-m"
r A = (l-w) {(mowo) 0(—0-0—> -9, (M+m ) w\ 5,
; M- M-u
‘ 2 2 [ ] [ ]
= +n [(u‘w.) O(G.)-a‘(mvu.) °<o. )]

o

3 - u [Hl-m (M;: ) - (u;:.)]

. M~m M~m ‘
B = (l=-m) (mo-m ¢ —300 - °o° 4“’0) t
M=y M=y \
e e
+w [(u.-u) ) (c. ) - o‘«o( R )] ‘

+ M

- n -
9. Numerical Calculations of & + b [ (x,AM)
i=1

Using the same parameter values as in section 7 we obtain the forecasts
based on optimal trimming. go compare with g(x) it is worthwhile
to calculate also &'+ B' [ (x,AM)

with i=1

(2]

i-wu‘

k
Cal

le-nw l=n

JRTSAa nCR

e R Pl
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le observation case

g2
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P = 0.2289 §
1=l

sin
F=0.4412 (xAM)+9.5817

M= 14.68
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.22 )
15.33 1

approximation to total premium

a) Results for n=l_(sin
Results for n=2

Truncation point
truncation point
formula:

formula:
x
S
6
7
8
9

b)
b;.
6% 16.88
18,65 14,088 1S

22 16.65 16.88 15.11 19.33 1S,

18,65 16.88 19.11 15.33 18
16,69 16,88 15.12 15.33 13

1..53 1

16,3

1

19
20
a
3
)
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i=1
u

iSan s e

§ = 0.2543 § (x

approximation to ordina
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Final Remarks

in this paper excess) claims. With this intuitive background in
In any case truncation at the upper end of the distribution is in-
troducing an additional parameter into the credibility formulae

our minds we have in our explicit calculations been looking at
as an approximation to the real world, and it is our feeling that

the approximation is particularly bad at the lower tail of the

distribution.
and we hope to have demonstrated in this paper that the labour

caused by the new parameter can be worthwhile indeed.

viously the normal distribution being symmetric one could also ob-
our assumption of normally distributed claims should only be seen

deviations from ordinary claims towards the higher side only. Ob~
sexve "outliers” to ordinary claims towards the lower side hence
leading to a truncation at the lower end as well. But of course

The Data Trimmed Credibility Formulae seem quite appropriate for
Experience Rating in the presence of catastrophic (or as called

10.




..........

11, Bibliography

(1] A. Gisler Optimales Stutzen von Beobachtungen im
Credibility Modell (ETH Thesis 1980)

r see also A. Gisler Optimum Trimming of Data in the Credibility
Model BASA 1980 (31

M-S AL Sadft

12. Appendix

, For the interested reader we are attaching the explicit calcula-
tions leading to formulae 19) and 20).
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A: Calculations leading to formula 19)

b = B[Ccv[xlAM, xz/e]] + Cov[E[xlAM/e], B[x2/9]]
Cov[XaM, x2/e] = 0, because X,,X, are conditionally independent.

Hence

M

b e

= covl(l-muft(e)+miy , (L=m)u_ (8) +mu,] , or

1

T TYY

by = (1=m)* Cov(u}(8), u,(8)]

and analogously (with szM instead of xz)

b, = (1-m* var [uh(8)]] .

; Let be Y = 1, where A denotes the event {X is ordinary}. Then

Var[XAH/el - E[V!rIXAM/e'Y]] + Var[E[XAM/e'Y]]

M, 2

- (1ew)q2M M L or(1em) (L0 -
(1 w)oo (8) + wa‘ + (1 w)(uo(e) He )

Hence

b, = Var{xXam]

3

f% = E[vaz(xa,o1] + varl(1-mug(e) + ull , or

3 by = (1-m) B(o3™(8)] + maM + w(1-m) E[(uy(8)-ug) *1+(1-m) var u}(e)]
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B: Calculations leading to formula 20)

i) Preparations

In the following we put r=/v' , ss/Ww and aonfva' w/ri+ 32,

! Furthermore we denote by ¢(x) the standardized normal dis-
tribution function and by #(x) the standardized normal den-
sity function.

By convolution we get

[he()of5dac - o (52)

- - °
:

T& o (52) o (t8) x - 2 o (22)

o

Noting that ¢'(x) = =-x ¢o(x) integration by parts gives

F | [ cemnre (552) o (252) ac = - 22 o (252) o (225) o |
E

and thus

.Z“ (%)« (42 ax = use (‘%ﬂ)- £, (Ma;u)

o 0
3 ), (M) o, (ew), (xE
) Because of o ( s ) ® = ® (1if) ® (—EE)
2
’ wh‘:. ﬁ - i!—*S_zM and a - t—s
! r+ g %
] we obtain
| 7 x=p M-x
o - X 8) . 0. 8
i --“(') <‘)dx o("o) e
g
| x3e (x—;!) ® (g;—x) dx = o (—;o_u.> < § < (f? +32)
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Integration by parts gives

7 x(x-u) o (555) ¢ (’?) dx = s‘.z ® (3%!) ¢ M—;ﬁ) ds

- we (52) o (%5) &

and thus using the above formulae

} ]
X=u) , /M=x - 2 M-u) (s 2 M-u
_.i xzv(—-’ )°(—r )dx s(u+s M<—°o) (—"o) (2r u+(u+u)s‘)o(°° )

actual calculations

M X x=8 .

“o(°’ - l T ° (7)dx + M+ Pr(x 2 M/e]
= - ry (@)4-99:[:{:14/9] +nPr[xzu/e]
- M+ (8-M)0 %) - m(’-‘;—e)

uo(e) = 9

Applying the formulae derived in i) we get by straightforward
calculations

) 8-m
sl = [ Mo %—o( ,°) de

M-m M-m
- M e (M-ma)o(—o—o-)-ooo < 5 °)
o 0

M= M
BLO-u5(0)] = Mg + (s%um}- w’( m°) ) mo( .,,)

Hence

M=
Covlug(9),u, () ] = E(o-u(0)] = my 2(u(8)] = %0 (a—"")
]

i
[




and
. M'xno
‘ b, = (l=7)° wd 5, .

As Cov(XnM, szM/xl,xz ordinary J

= Cov(UjaM, U,AM]
= E[CoviUyal, UpaM 1] + CovIE[UAM o], E(UM o]]

= Va:[u':(e)] , we conclude from 19)

b.= (l-m)? Cov[UlAM, uzan] .

2

To obtain a closed formula for b3, observe
: . M M
. ) L oxeu)dx = - xge [XSE J" (&:@.
- J;x(xu)qo(xu)dx xao(o){-“«ha_no c)dx

= - gMo (M—;E) + g% (g;_u)

k4

. x? % p(x~u)dx = ~ g(M+u) o (533)4- (u2+0?) ¢ (M—;H)
o - !
X According to 1) the density function of X is

£(x) = f(l-w)po(x/e) du(8) + mpg(x) = (l-m)p,(x) + mpg(x)

with (see 6.1 and 6.2)

(%)

. Al L el
LR VST SR, -

Po(x) =

AP
Q
o "“

-\

1 x—u.
P.(x) = ;-w(-?)
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Hence

M-m \

\°o/

E[(XAM) 3] = (1-m) {(mz + c’)o

M-m M=y
+ M‘{-(l—w) O‘(Uo)-mt( s
0

= A

a (M+m o

g
S )
]

Z
OB
e

)}

The same calculations as at the beginning of ii) leading to
the formula for u:’(e) are repeated to obtain E[XaM] , of

course with different parameter values, From this calculation

we obtain

M- M-
E[XAM] = M + (l-1) {(mo-u)o( a%) -0 o( i
[+

M=y u
rm {‘"0'"”( g ‘> T Te® (ﬁa e)
e e

J
)
J

We can now, finally, write

by = Var{XaM] = A = B2







